Government Technology

Industry Partners on Fuel Cell-Powered Mobile Lighting System



Fuel Cell-Powered Mobile Lighting
Fuel Cell-Powered Mobile Lighting 1

October 20, 2009 By

Photo: Luxim and Lumenworks manufacture and design the plasma lighting sources and reflectors used in the fuel cell-powered mobile lighting system spearheaded by Sandia. Here, the first outdoor test of the lighting assembly is successfully. (Photo courtesy Stray Light Optical Technologies)

Sandia National Laboratories, with help from The Boeing Company, the California Department of Transportation (Caltrans), and others, is leading an effort to develop a commercially viable, fuel cell-powered mobile lighting system.

"Mobile lighting" refers to small, portable lighting systems that are used primarily by highway construction crews, airport maintenance personnel, and even film crews.

"The beauty of this project is that it ties together the manufacturers [Multiquip, Altergy Systems, Luxim, Lumenworks, Stray Light] with Sandia and the end users [Caltrans, San Francisco International Airport] in one collaboration, hopefully reducing commercialization barriers that so often hinder the widespread use of new technology," said Sandia project lead Lennie Klebanoff. The end goal of the project, according to Klebanoff, is to get fuel cell technology into more widespread commercial use, particularly in general construction and aviation maintenance applications.

Two separate designs

Sandia has adopted a two-prong (alpha and beta) approach to the project. First, along with a number of the external partners who are contributing time and in-kind resources, Klebanoff's team is overseeing the production of the "alpha" mobile lighting unit that is expected to debut Oct. 22-26 at the annual meeting of the American Association of State Highway and Transportation Officials (AASHTO). The alpha unit is separate from the more advanced "beta" design that Sandia recently completed for Boeing and came about due to the enthusiasm of several industry partners and their desire to see a system built sooner rather than later.

"Caltrans wanted us to get the alpha version in front of their highway transportation peers immediately, and our unit will be in operation and actually illuminating the new electric cars being featured at the AASHTO meeting," said Klebanoff. "It will give all of us good feedback on how interested potential customers are in the technology, and also allow us to get an initial assessment of how the technology performs, particularly the plasma lighting."

Photo: The "alpha" system consists of a cart (manufactured by Multiquip), hydrogen tanks, and the fuel cell. The system shown here will be integrated with the plasma lighting to complete the system. (Photo courtesy Altergy Systems)

The alpha system consists of advanced power-saving Light Emitting PlasmaTM technology (contributed by Luxim, Lumenworks, and Stray Light), two high-pressure hydrogen tanks (purchased by Sandia), a trailer to transport the equipment (provided by Multiquip), and a fuel cell (provided and installed by Altergy Systems). Multiquip and Altergy are assembling the overall unit, while Sandia has consulted on its design and formulated the alpha unit technical plan for the team.

The project has also attracted the interest of SFO, a long-time partner with Sandia on various homeland security projects. SFO would like to test the system for use in nighttime runway repair work, as well as in its terminal renovation activities. Unlike the diesel systems that traditionally power mobile lighting units, the fuel cell-powered mobile light can be used anywhere.

Boeing design will use metal hydride storage

Boeing funded Sandia primarily to develop the "beta" design, a more sophisticated, technically ambitious unit that utilizes metal hydride storage tanks designed by Ovonic Hydrogen Systems. These tanks store 12 kilograms of hydrogen, and thus offer some 90 hours of operating time (compared to the 30-40 hours offered by the alpha unit). Sandia's engineers designed the overall beta system and solved the thermal management issues that surround metal hydride storage, including coupling waste fuel cell heat to the hydride bed. Metal hydride storage is


| More

Comments

Add Your Comment

You are solely responsible for the content of your comments. We reserve the right to remove comments that are considered profane, vulgar, obscene, factually inaccurate, off-topic, or considered a personal attack.

In Our Library

White Papers | Exclusives Reports | Webinar Archives | Best Practices and Case Studies
Cybersecurity in an "All-IP World" Are You Prepared?
In a recent survey conducted by Public CIO, over 125 respondents shared how they protect their environments from cyber threats and the challenges they see in an all-IP world. Read how your cybersecurity strategies and attitudes compare with your peers.
Maintain Your IT Budget with Consistent Compliance Practices
Between the demands of meeting federal IT compliance mandates, increasing cybersecurity threats, and ever-shrinking budgets, it’s not uncommon for routine maintenance tasks to slip among state and local government IT departments. If it’s been months, or even only days, since you have maintained your systems, your agency may not be prepared for a compliance audit—and that could have severe financial consequences. Regardless of your mission, consistent systems keep your data secure, your age
Best Practice Guide for Cloud and As-A-Service Procurements
While technology service options for government continue to evolve, procurement processes and policies have remained firmly rooted in practices that are no longer effective. This guide, built upon the collaborative work of state and local government and industry executives, outlines and explains the changes needed for more flexible and agile procurement processes.
View All

Featured Papers