Government Technology

Operation: Operability


January 2, 2006 By

The 9/11 terrorist attacks triggered a nationwide scramble to develop interoperable communications among emergency responders. But Hurricane Katrina left officials scratching their heads over the utter disappearance of even basic communications.

Radio system failures meant local first responders couldn't communicate easily among themselves, not to mention the array of outside agencies that arrived on the scene to help.

"We didn't have an interoperability problem, we had an operability problem," said Lt. Col. Joey Booth of the Louisiana State Police. "We couldn't communicate within our own department much less with other departments. We had a lot of responders coming in to help, but our system didn't have the capacity to operate with all these new users."

Experts say these shortcomings point to the need for more attention on ensuring the availability of radio systems during major disasters, or at least to creating plans that guide first responders when radio communications fail. Furthermore, experts warn that public policymakers must address the issues that hinder radio operability when it's needed most -- a dearth of available radio spectrum and the failure to anticipate worst-case scenarios.

Ultimately the challenges of radio operability and interoperability are intertwined. To succeed, policymakers and emergency responders must tackle both issues: building radio systems that withstand worst-case disasters and linking to systems used by other agencies.

No Infrastructure

During the Katrina response, emergency personnel found that nearly all forms of communication, such as cell phones, landlines and satellite phones, were down, and the Louisiana State Police radio system was inoperable because the frequency on which it operated was clogged with users.

Insufficient frequency plagues public safety communications, but Congress and the FCC are working to set aside more frequency for public safety agencies.

With no means of communicating, it's difficult to dispense commands and coordinate response. During Katrina's aftermath, communications were reduced to the use of runners, as in World War II.

"One of the basic foundations for incident command is communications," said Willis Carter, who, as chief of communications, manages the Shreveport, La., Fire Department's Emergency Communications Center. Carter is also the first vice president of the Association of Public Safety Communications Officials International (APCO). "You have to be able to communicate throughout the command system for it to be effective. We were unable to do that."

Given the recent emphasis on communications, David Boyd, director of the Department of Homeland Security's (DHS) Office for Interoperability and Compatibility, was surprised there was such a complete breakdown.

"Part of that is because we just assumed everybody understood that operability was the essential first requirement," Boyd said. "Among public safety agencies, they understand that. But it's clear at the policy level that there is some confusion about the distinction between interoperability and operability."

Ongoing Debate

Efforts to develop interoperability began before the Sept. 11 terrorist attacks, but the concept became a popular topic immediately thereafter, when fire, police and port authority personnel couldn't communicate with one another. As a result, some perished in the collapse of the World Trade Center towers.

The problem -- the inability of disparate radio systems to communicate with one another -- really began in the early 1990s when vendors started building proprietary systems. The different frequencies on which those systems are aired exacerbate the problem.

The Louisiana State Police radio system operates on an 800 MHz band frequency, and could not handle the multitude of users swarming the area to help.

A frequency band is a range of frequencies in a spectrum used for transmission or reception of radio waves. The spectrum's ranges/bands go from very low frequencies of 3 kHz to 30 kHz, to ultra-high frequencies of 300 MHz to 3000 MHz, and all the way up to extremely high frequencies of 30 GHz to 300


| More

Comments

Add Your Comment

You are solely responsible for the content of your comments. We reserve the right to remove comments that are considered profane, vulgar, obscene, factually inaccurate, off-topic, or considered a personal attack.

In Our Library

White Papers | Exclusives Reports | Webinar Archives | Best Practices and Case Studies
Fresh Ideas In Online Security for Public Safety Organizations
Lesley Carhart, Senior Information Security Specialist at Motorola Solutions, knows that online and computer security are more challenging than ever. Personal smartphones, removable devices like USB storage drives, and social media have a significant impact on security. In “Fresh Ideas in Online Security for Public Safely Organizations,” Lesley provides recommendations to improve your online security against threats from social networks, removable devices, weak passwords and digital photos.
Meeting Constituents Where They Are With Dynamic, Real-Time Mobile Engagement
Leveraging the proven and open Kofax Mobile Capture Platform, organizations can rapidly integrate powerful mobile engagement solutions across the spectrum of mobile image capture, mobile data capture and complete mobile process integration. Kofax differentiates itself by extending capture to mobility, supporting multiple points of constituent engagement. Kofax solutions dynamically orchestrate the user’s mobile experience from a single platform—reducing time to market, improving process perf
Public Safety 2019
Motorola conducted an industry survey on the latest trends in public safety communications. The results provide an outlook of what technology is in store for your agency in the next five years. Download the results to gain this valuable insight.
View All

Featured Papers